Search results for "quantum well"
showing 10 items of 76 documents
Strong quantum scarring by local impurities
2016
We discover and characterize strong quantum scars, or eigenstates resembling classical periodic orbits, in two-dimensional quantum wells perturbed by local impurities. These scars are not explained by ordinary scar theory, which would require the existence of short, moderately unstable periodic orbits in the perturbed system. Instead, they are supported by classical resonances in the unperturbed system and the resulting quantum near-degeneracy. Even in the case of a large number of randomly scattered impurities, the scars prefer distinct orientations that extremize the overlap with the impurities. We demonstrate that these preferred orientations can be used for highly efficient transport of…
Effects of 5 MeV electron irradiation on deep traps and electroluminescence from near-UV InGaN/GaN single quantum well light-emitting diodes with and…
2020
The electrical properties, electroluminescence (EL) power output and deep trap spectra were studied before and after 5 MeV electron irradiation of near-UV single-quantum-well (SQW) light-emitting diodes (LED) structures differing by the presence or absence of InAlN superlattice underlayers (InAlN SL UL). The presence of the underlayer is found to remarkably increase the EL output power and the radiation tolerance of LEDs, which correlates with a much lower and more slowly changing density of deep traps in the QW region with radiation dose, and the higher lifetime of charge carriers, manifested by higher short-circuit current and open-circuit voltage in current–voltage characteristics under …
Ruddlesden-Popper Hybrid Lead Bromide Perovskite Nanosheets of Phase Pure n=2: Stabilized Colloids Stored in the Solid State.
2021
Ruddlesden-Popper lead halide perovskite (RP-LHP) nano-nanostructures can be regarded as self-assembled quantum wells or superlattices of 3D perovskites with an intrinsic quantum well thickness of a single or a few (n=2-4) lead halide layers; the quantum wells are separated by organic layers. They can be scaled down to a single quantum well dimension. Here, the preparation of highly (photo)chemical and colloidal stable hybrid LHP nanosheets (NSs) of ca. 7.4 μm lateral size and 2.5 nm quantum well height (thereby presenting a deep blue emission at ca. 440 nm), is reported for the first time. The NSs are close-lying and they even interconnect when deposited on a substrate. Their synthesis is …
Consequences of the spatial localization on the exciton recombination dynamics in InGaP/GaAs heterostructures
2002
5 páginas, 4 figuras.
Momentum and energy dissipation of hot electrons in a Pb/Ag(111) quantum well system
2021
The band structure of multilayer systems plays a crucial role for the ultrafast hot carrier dynamics at interfaces. Here, we study the energy- and momentum-dependent quasiparticle lifetimes of excited electrons in a highly ordered Pb monolayer film on Ag(111) prior and after the adsorption of a monolayer of 3,4,9,10-perylene-tetracarboxylic dianhydride (PTCDA). Using time-resolved two-photon momentum microscopy with femtosecond visible light pulses, we show that the electron dynamics of the Pb/Ag(111) quantum well system is largely dominated by two types of scattering processes: (i) isotropic intraband scattering processes within the quantum well state (QWS) and (ii) isotropic interband sca…
Microcavity Light Emitting Diodes Based on GaN membranes Grown by Molecular Beam Epitaxy on Silicon
2003
Resonant-cavity InGaN/GaN quantum well light emitting diodes have been fabricated. Nitride layers were grown by molecular beam epitaxy on Si (111). We fabricated the structures using a combination of Si substrate etching, GaN etching and dielectric (Ta2O5/SiO2) mirror deposition. The electroluminescence spectra show that the emission within the distributed Bragg reflector stop band is enhanced in the membrane microcavity. The cavity modes are broadened by some cavity length non-uniformity that is introduced when the GaN is back etched to adjust the cavity length. This process does not need any transfer on an intermediate host substrate and is fully compatible with large area semiconductor p…
Resonant rayleigh scattering in semiconductor structures
1995
A detailed study of the relative role played by localized and/or propagating intermediate excitonic states in, resonant Rayleigh scattering (RRS) is presented for a large set of GaAs quantum well (QW) and bulk structures. We show that the two kinds of states contribute to RRS through different mechanisms. We concluded that RRS occurs via localized states in QW heterostructures, very likely due to localization by the interface roughness, while bulk, crystals turn out to be better candidates for RRS via propagating states.
Photodiffraction in InGaAs/InGaAsP multiple quantum wells enclosed in a microcavity
1997
Abstract We report new results on the diffraction properties of photoinduced gratings in InGaAs/InGaAsP MQW structures. The original feature of this device is that the QWs are enclosed in an asymmetric Fabry–Perot microcavity in order to increase the diffraction efficiency. We observe oscillations in the diffraction efficiency due to resonant effects in the microcavity. The experimental spectra are compared with theory. Diffraction efficiency at 1.55 μm attains a maximum value of 2.7% at a write beam fluence of 260 μ J cm −2 , and then decreases at higher fluences. We explain this phenomenon by an absorption saturation at high excitation.
Scale-free relaxation of a wave packet in a quantum well with power-law tails
2013
We propose a setup for which a power-law decay is predicted to be observable for generic and realistic conditions. The system we study is very simple: A quantum wave packet initially prepared in a potential well with (i) tails asymptotically decaying like ~ x^{-2} and (ii) an eigenvalues spectrum that shows a continuous part attached to the ground or equilibrium state. We analytically derive the asymptotic decay law from the spectral properties for generic, confined initial states. Our findings are supported by realistic numerical simulations for state-of-the-art expansion experiments with cold atoms.